Effect of dual growth factor delivery on chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in injectable hydrogel composites.

نویسندگان

  • Hansoo Park
  • Johnna S Temenoff
  • Yasuhiko Tabata
  • Arnold I Caplan
  • Robert M Raphael
  • John A Jansen
  • Antonios G Mikos
چکیده

An injectable hydrogel composite consisting of oligo(poly(ethylene glycol)fumarate) (OPF) and gelatin microparticles has been developed as a novel carrier system for cells and growth factors. Rabbit marrow mesenchymal stem cells (MSCs) and gelatin microparticles (MPs) loaded with insulin-like growth factor-1 (IGF-1), transforming growth factor-beta1 (TGF-beta1), or a combination of both growth factors were mixed with OPF, a poly(ethylene glycol)-diacrylate crosslinker and the radical initiators ammonium persulfate and N,N,N',N'-tetramethylethylenediamine, and then crosslinked at 37 degrees C for 8 min to form hydrogel composites. Hydrogel composites encapsulating rabbit marrow MSCs and blank MPs served as controls. At day 14, confocal fluorescent images of OPF hydrogels showed a strong aggregation of rabbit marrow MSCs when encapsulated with IGF-1-loaded MPs with or without TGF-beta1-loaded MPs. Quantitative RT-PCR results showed that rabbit marrow MSCs encapsulated with MPs loaded with TGF-beta1 or both TGF-beta1 and IGF-1 had a significant increase in the expression of chondrocyte-specific genes such as collagen type II and aggrecan at day 14 as compared with the control group. Specifically, samples with both TGF-beta1-loaded MPs and IGF-1-loaded MPs exhibited a 121 +/- 20-fold increase of type II collagen gene expression and a 71 +/- 24-fold increase of aggrecan gene expression after 14 days of in vitro culture as compared with controls at day 0. These results suggest that hydrogel composites based on OPF and gelatin microparticles have great potential as carriers for MSCs and multiple growth factors for cartilage tissue engineering applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chitosan-based injectable hydrogel as a promising in situ forming scaffold for cartilage tissue engineering.

Chitosan-beta glycerophosphate-hydroxyethyl cellulose (CH-GP-HEC) is a biocompatible and biodegradable scaffold exhibiting a sol-gel transition at 37°C. Chondrogenic factors or mesenchymal stem cells (MSCs) can be included in the CH-GP-HEC, and injected into the site of injury to fill the cartilage tissue defects with minimal invasion and pain. The possible impact of the injectable CH-GP-HEC on...

متن کامل

Effects of BIO on proliferation and chondrogenic differentiation of mouse marrow-derived mesenchymal stem cells

In vitro expansion of mesenchymal stem cell (MSCs) into large number is necessary for their application in cell-based treatment of articular cartilage defects. On the other hand, some studies have indicated that BIO (6-Bromoindirubin-3-Oxime) possesses mitogenic effects on cell culture. The objective of the present study was to examine the effect of BIO on in vitro expansion and chondrogenic di...

متن کامل

Generation of osteochondral tissue constructs with chondrogenically and osteogenically predifferentiated mesenchymal stem cells encapsulated in bilayered hydrogels.

This study investigated the ability of chondrogenic and osteogenic predifferentiation of mesenchymal stem cells (MSCs) to play a role in the development of osteochondral tissue constructs using injectable bilayered oligo(poly(ethylene glycol) fumarate) (OPF) hydrogel composites. We hypothesized that the combinatorial approach of encapsulating cell populations of both chondrogenic and osteogenic...

متن کامل

Study of Chondrogenic Effects of Chondrocytes Cocultured With Murine Bone Marrow-Derived Mesenchymal Stem Cells

Purpose: Co-culture systems of marrow derived mesenchymal stem cells (mMSCs) with mature chondrocytes have theoretically been considered as a putative way of MSCs chondrogenic differentiation. MSCs differentiated in this system could be used for transplantation purpose without of any need to their purification since the cells with which MSCs are co cultured are native cartilage cells. Despite o...

متن کامل

Osteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor

Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 88 4  شماره 

صفحات  -

تاریخ انتشار 2009